X-ray spectroscopy study of the electronic structure peculiarities of silicon nitride nanofibers

O.Y. Khyzhun, P.M. Sylenko, Y.M. Solonin, A.N. Shlapak, A.V. Ragulya, S.S. Petrovska

Frantsevich Institute for Problems of Materials Science of National Academy of sciences of Ukraine, 3 Krzhyzhanivsky Str., 03680 Kyiv, Ukraine, <u>khyzhun@ipms.kiev.ua</u>

Last years intensive investigations on development and study of reinforced ceramic materials are carried out. Such materials can be applied effectively at high-temperature conditions in oxidizing medium. Whiskers and in last decade nanofibers of refractory compounds such as SiC, Si_3N_4 are used. Si_3N_4 whiskers are promising reinforcing materials for high-temperature ceramic matrixes aimed on increasing their strength and fracture strength

In present work process of synthesis of micro and nanofibers of Si_3N_4 by nitriding of silicon powder was investigated. Results of investigations employing scanning electron microscopy method showed that at 1500 °C and synthesis time of 1 hour some fibers appear among silicon particles. An increase of nanofibers quantity and presence of some microfibers were observed with increasing synthesis temperature to 1530 °C. Further increase of temperature and synthesis time promotes increasing quantity of formed nanofibers, and at synthesis temperature of 1550 °C the only synthesis products were Si_3N_4 nanofibers.

From X-ray photoelectron (XPS) Si 2p and N 1s core-level spectra it is obvious that values of binding energies of Si 2p and N 1s core-level electrons of Si₃N₄ nanofibers synthesized by silicon powder nitridation for 2 hours at 1530 and 1550 °C coincide within the accuracy of the present XPS measurements with those of the corresponding core-level electrons of the reference Si₃N₄ powder This fact indicates that charge states of the constituent atoms in the Si₃N₄ nanofibers under study correspond to those in the reference Si₃N₄ powder.

It was revealed that maxima of XPS O 1*s* and C 1*s* spectra are at 532.8 ± 0.1 eV and 285.0 ± 0.1 eV, respectively in three samples under investigation and these binding energies refer to oxygen- and carbonbearing compounds absorbed by surfaces of sample. We did not detected any features on the XPS O 1*s* and C 1*s* core-level spectra that could be attributed to oxygen/carbon atoms being in chemical binding with the material under consideration. It was revealed that XPS valence-band spectra of the Si₃N₄ nanofibers and the reference powder are similar.

The X-ray emission Si L α bands of reference Si₃N₄ powder and of Si₃N₄ nanofibers synthesized by silicon powder nitridation for 2 hours at 1530 °C and 1550 °C studied reveal similar elements of fine structure, i.e. their shapes are similar with the exception of insignificant differences.