ELECTRONIC STRUCTURE AND MAGNETIC PROPERTIES OF FeGe2

<u>A. A. Lyogenkaya¹</u>, G. E. Grechnev¹

¹ B. Verkin Institute for Low Temperature Physics and Engineering, of the National Academy of Sciences of Ukraine 47 Lenin Ave., 61103 Kharkov, Ukraine e-mail: lyogenkaya@ilt.kharkov.ua

The transition metal compounds with germanium and tin having the tetragonal C16-type crystal structure exhibit unusual magnetic, electrical and structural properties. These properties make them the subject of continuous experimental and theoretical investigations. FeGe₂ is an itinerant electron antiferromagnet, which has a second-order transition from a paramagnetic phase to an incommensurate phase at 289 K with a long-wavelength modulation in the basal plane, and the other first-order transition from an incommensurate to a commensurate antiferromagnetic phase at 263 K.

In our work we report results of theoretical calculations of electronic structure and magnetic properties of FeGe₂. *Ab initio* calculations of the volume dependent electronic structure and magnetic properties were performed by employing the full-potential LMTO and LAPW methods for paramagnetic and magnetic configurations of FeGe₂ compound. It is unambiguously established that the collinear antiferromagnetic configuration has clearly the lowest total energy so that it is the ground state of the bulk FeGe₂. The calculated magnetic moments of FeGe₂ appeared to be about 1.2 μ_B per formula unit and arise from the iron-derived 3*d* states. This is in agreement with neutron experiments, which reported the magnetic moments about 1.2 -1.3 μ_B , and this clearly indicates the itinerant nature of antiferromagnetism in FeGe₂.

It is expected, that a pressure can provide drastic changes in electronic and magnetic properties. Therefore we studied a behavior of magnetic susceptibility χ under uniform and uniaxial pressures for the paramagnetic and antiferromagnetic phases. The spin and orbital Van Vleck contributions to χ and their volume dependences were calculated *ab initio* in an external magnetic field and were found in agreement with the available experimental data. It is appeared that the calculated $d\ln\chi/d\ln V$ derivative in the PM phase of FeGe₂ is large but somewhat lower than the corresponding derivatives in the PM compounds with highly enhanced spin susceptibility (e.g. CeCo₂, YCo₂, TiCo, Ni₃Al). Also, for the antiferromagnetic phase of FeGe₂ the substantially anisotropic and pressure dependent magnetic susceptibilities were evaluated *ab initio*, which allowed to shed light on results of recent experiments, including magnetostriction and uniaxial pressure effect on magnetic susceptibility.