Unusual magnetic properties of layered $MCrS_2$ compounds

A. N. Yaresko,¹ D. A. Kukusta,^{1,2} A. V. Ushakov,^{1,3,4} and D. I. Khomskii³

¹Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany

²Institute for Metal Physics, 36 Vernadskyi Bld., UA-03680 Kiev, Ukraine

³II. Physikalisches Institut, Universität zu Köln,

Zülpicherstraße 77, D-50937 Köln, Germany

⁴Institute for Theoretical Physics, Clausthal University of Technology,

Leibnizstraße 10, D-38678 Clausthal Zellerfeld, Germany

Abstract

A chromium sulfide AgCrS₂ has recently attracted considerable attention due to its multiferroic properties and unusual double-stripe magnetic order which appear below the Néel temperature of 50 K. AgCrS₂ belongs to a family of layered $MCrS_2$ (M^+ =Li, Na, K, Cu, Ag, Au) compounds in which magnetic $\operatorname{Cr}^{3+}(3d^3)$ ions form a triangular lattice. Although charge and orbital degrees of freedom in these compounds are frozen, geometrical frustrations of magnetic interactions, inherent in the triangular lattice, lead to fascinating magnetic properties: depending on the size of an M^+ ion magnetic order in Cr planes changes from non-collinear 120° (Li) antiferromagnetic, to double stripes (Ag, Au), and, finally, to ferromagnetic (K). In order to understand this strong variation of the magnetic properties we calculated band structures and total energies $E(\mathbf{q})$ as a function of a wave vector \mathbf{q} for various spin spiral structures. Effective exchange coupling constants j between Cr spins are then estimated by fitting $E(\mathbf{q})$ to an appropriate classical Heisenberg model. We found that depending on the M size the nearest neighbor coupling j_1 changes from strongly antiferromagnetic in LiCrS₂ to ferromagnetic in KCrS₂, whereas the coupling j_3 between the 3-rd Cr neighbors is strong and remains nearly constant in all the compounds. In AgCrS₂ with $j_1 \ll j_3$ the double stripe magnetic order is stabilized by monoclinic distortions of the crystal structure. We discuss the microscopic origin of various j and show that similar considerations help to understand the magnetic properties of other frustrated Cr compounds ACr_2S_4 with a spinel structure.