

Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

ARPES on iron-based superconductors: leading role of *xz/yz* orbitals

Evtushinsky Daniil

ES&ES, Kiev, May 23rd

Iron-based superconductors

Iron-based superconductors

Iron-based superconductors

Fermi surfaces of iron-based superconductors

Fermi surfaces of iron-based superconductors

122

Superconducting gap

Hole-doped BaFe₂As₂

Superconducting gap in Ba_{1-x}K_xFe₂As₂

Hole-doped BaFe₂As₂

Gap on propeller-like structure

Hole-doped BaFe₂As₂

Gap on propeller-like structure

Momentum dependence of the superconducting gap in $Ba_{1-x}K_xFe_2As_2$

Electronic band structure of $Ca_{1-x}Na_xFe_2As_2$

Superconducting gap in $Ca_{1-x}Na_xFe_2As_2$ with $T_c=33K$

Coupling strength, $2\Delta/k_{\rm B}T_{\rm c}$, in iron-arsenide superconductors

k_z -dependence of the gap?

3D gap in hole-doped BaFe₂As₂

Polarization analysis of electronic states

Calculation by A. Yaresko

Comparison of calculated and measured band dispersions

38.5K

Calculation by A. Yaresko

3D gap in hole-doped BaFe₂As₂

Strong pairing at iron $3d_{xz/yz}$ orbitals in $Ba_{1-x}K_xFe_2As_2$

Superconducting gap in Na_{1-x}Co_xFeAs

Effects of interaction with a bosonic mode in superconducting state

Interaction with a bosonic mode in $Ca_{1-x}Na_xFe_2As_2$ below $T_c=33K$

Interaction with a bosonic mode in $Ba_{1-x}Na_xFe_2As_2$ below $T_c=34K$

kink energy = 23 meV Δ = 10.5 meV

$$\Omega_{\rm M} = 13..14 \; {\rm meV}$$

Christianson et al., Nature (2008)

Similar mode effects in SC state for cuprates and iron arsenides

High energy band renormalization

Band renormalization of ~3 in iron arsenides

LiFeAs

Borisenko et al., PRL (2009)

High energy kink in cuprates

cuprates

iron arsenides

Momentum (1/Å)

Meevasana et al., PRB (2007)

Phenomenological conclusions for iron-based superconductors

- Various Fermi surface shape
- Large and small superconducting gaps for *xy* and *xz/yz* orbitals respectively
- Effects of electron coupling to a low energy bosonic mode below T_c , stronger for xz/yz orbitals
- Electronic structure can be understood as theoretical bare bands plus interaction with a bosonic spectrum

Acknowledgements

V. B. Zabolotnyy A. A. Kordyuk T. K. Kim J. Maletz S. Thirupathaiah S. V. Borisenko

FW

S. Aswartham I. Morozov L. Harnagea M. Roslova S. Wurmhel R. Hübel A. Koitzsch M. Knupfer B. Büchner A. N. Yaresko D. S. Inosov A. V. Boris G. L. Sun D. L. Sun V. Hinkov C. T. Lin B. Keimer A. Varykhalov E. Rienks R. Follath

H. Q. Luo Z. S. Wang H. H. Wen

P