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e The invention of a solid state laser cavity based on the low phonon energy
crystal Pri*:LaCl, at 5.2 and 7.2 pum by Bowman and co-workers [1] has
stimulated a lot of attempts on development and investigation of non-linear
optical crystals for middle infrared (mid-IR) and long-wavelength infrared
(long-wave-IR) laser sources for their use as compact devices applied for
remote sensing in bio-chemical agents, in the vibrational fingerprint region,
free space communications, clinic and diagnostic analysis, ultra-sensitive
detection of drugs and explosives, optical remote sensing technology LIDAR
(Light Detection and Ranging), etc. These applications require high output
power/energy and no moisture-sensitive hlgh—purlty materials at room-
temperature operatlons Nevertheless, LaCl, is strongly hygroscoplc and, as a
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e Those requirements have generated a great number of
studies regarding elaboration of novel complex non-
hygroscopic and non-linear optical low-phonon energy lead
halides with the common formulas APb,X. and T1,PbX_
(where A = K, Rb; X =Cl, Br or I).

e The APb,X; and TL,PbX; (A = K, Rb; X = Cl, Br, I) halides
are capable to accept effective doping of rare-earth (RE)
elements and mid-IR solid-state laser sources on RE ion-
doped lead halides pumped by conventional lasers (or




The bromide possesses transparency ranging from (.65 to at least 24 um.

Strong luminescence at around 4-5.5 um have been detected for
Pr3*:TL,PbBr; single crystal and has been assigned to the *H, <> *H,
transition of the Pr3* ions.

e Pr’":TLPbBr, crystal was found to be very promising material for the
development of a broadly tunable mid-IR solid-state laser source.

e Er3:TLPbBr, was found to possess substantial emission cross sections in
the band II of the atmosphere transparency window.

e Two polymorphous forms, namely orthorhombic low-temperature (LT)
and tetragonal high-temperature (HT), have been detected for T1,PbBr_,
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Panoramic view of a piece of the
as-grown T1,PbBr, single crystal
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Experimental and calculated X-ray
diffraction patterns and their difference




Table
Atomic positions for LT-TI,PbBr;

Atom Wyckoff x

site

Pb 4
Tl 4
T2 4
TI3 4
Br1 4
Br2 4
Br3 4
Brd 4
Bro 4

0.0438(3)
0.0379(3)
0.7289(3)
0.8034(2)
0.2293(6)
0.6436(6)
0.6185(6)
0.9752(6)
0.4041(6)

y

0.2053(4)
0.8407(4)
0.9210(4)
0.4575(5)
0.2535(8)

0.3050(11) 0.8525(12)

z B, x 102 (nm?)

0.8271(5) 1.18(11)
0.1895(5) 2.15(12)
0.1626(5) 1.39(10)
0.0244(4) 1.29(12)
0.6720(13) 1.1(3)
1.5(3)

0.6067(11) 0.1704(13) 0.9(3)

0.0432(11) 0.5209(11)

0.4084(9)

1.8(3)
0.9862(11) 2.1(3)



ethods of study

Theoretical:
The first-principles band-structure full potential
linearized augmented plane wave (FP-LAPW)
method with the WIEN97 code was used for
calculations of the total and partials DOS




e Survey XPS spectra

recorded for (1)
pristine and (2) Ar*
ion-bombarded
surface of T1,PbBr,

single crystal.
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hombic L7-T1,PbB
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e Dectailed XPS (a) T14d and Pb 4d and (b) TI 4f and Pb 4f core-level spectra recorded
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e Dectailed XPS (a) Br 3p and (b) Br 3d core-level spectra recorded for (1) pristine and
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e The dispersions of the curves near the
valence-band maxima and
conduction-band minima are rather
flat in the L7-T1,PbBr; phase.

e The conduction band minimum i1s
located at £=(0.0 0.5 0.475), whilst
the valence-band maximum is located
at £=(0.0 0.5 0.350).

Energy [eV]

-16

-20

LT-T1 PbBr,




500000

302

I HT-TI PbBr
a HI-T1,PbBr,; space group /4, [ ¥ s TI 4f
“": 2 400000 |-
.E g a4 = R
E E. 300000
5 z
) 2
z - £ 200000
E L1-T1 PbBr,; space group 1222, Br3d
kS|
100000 |- Pb 5d
Tl 5d
0 T T T T v T v T v T
1000 800 600 400 200 0
Binding energy (eV)
20 (degree)
e XRD patterns recorded for T1;PbBr; at e Survey XPS spectrum recorded

room temperature (L7-T1,PbBr;; bottom for the H7-T1,PbBr, phase at




Intensity (cps)

Pb 4f

T T T T T
144 140 136 132

Binding energy (eV)

Intensity (cps)

Br 3d

T : T x T T T T T
70 68 66 04 62

Binding energy (eV)

(b)

Intensity (cps)

320000

| HT-TI PbBr, TI4f,
280000

L]

40000

200000

160000

120000

80000

40000

T T T T T ¥ T T T T T
129 126 123 120 17 114

Binding energy (eV)

e Detailed XPS (a) Pb 4f, (b) TI
41, and (c) Br 3d core-level
spectra recorded for the H7-
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® (a) Total DOS, total and partial densities of states of (b) Tl, (c) Pb, and (d) Br atoms of the
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The dispersions of the curves near the valence-band maxima and conduction-band minima are

rather flat in the H7-T1,PbBr; phase.
® The conduction band minimum is located at the M point (0.5 0.5 0.0), whilst the valence-band
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XPS valence-band spectrum (including upper Pb 5d
and T1 5d core-levels) recorded for the H7-T1;PbBr;

Results of FP-LAPW band-structure
calculations of different H7-T1,PbX;
(X = Cl, Br) phases

Compound ~ Valence band Value of E, .y
width

LT-Tl,PbBry 4.82eV 3.05eV [1]

HT-TI,PbBr; 4.85¢eV 2.26 eV [2]
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e Curves of broadening the total DOS of H7-T1,PbBr; with the Lorenz parameters y=
0.2 to 1.0: (a) NSOC and (b) SOC calculations




Our XPS results indicate the low hygroscopicity and high chemical stability of T1,PbBr
that is extremely important for handling this material as an efficient laser source
operating in ambient conditions.

The ab initio FP-LAPW calculations render that the dominant contributors in the
valence-band region of the LT and HT polymorphous forms of T1,PbBr; are the Br 4p-
like states that contribute mainly into the top and the central portion of the valence
band, while its bottom is composed mainly by contributions of the T1 6s-like states.

FP-LAPW data reveal that the bottom of the conduction band of H7-T1,PbBr, is
dominated by contributions of the Pb 6p*-like states, in L7-T1,PbBr; it is dominated by
contributions of the Pb 6p*- and TI 6p*- likes states in almost equal proportions.

Our theoretical data indicate that the orthorhombic and tetragonal phases of T1,PbBr.
are indirect-gap materials with the band gap values of E, = 3.05 eV (L7-T1,PbBr;) and
E,=2.26 ¢V and 1.76 eV for NSOC and SOC calculations of H7-T1,PbBr;, respectively.

Comparative measurements at 20 and 300 °C of XPS core-level spectra of the T1,PbBr,
single crystal indicate that the charge states of the atoms constituting the compound do
not change during the orthorhombic (space group P2,2,2,) to tetragonal (space group
P4,)) transition.

We have detected some shift (about 0.3 eV) of the XPS valence-band spectrum towards
the Fermi level when going from L7-T1,PbBr, to H7-T1,PbBr.. This valence-band shift
is found to be in agreement with our theoretical FP-LAf’W predictions of decreasing the
band gap value when the crystal structure of T1,PbBr. changes from the orthorhombic
(P2,2,2,) to tetragonal (P4,).
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