ES&ES 2013

Probing spin textures of topological insulators by spin- and angle-resolved photoemission

Akio Kimura

Graduate School of Science, Hiroshima University

May. 22nd, 2013 @ Institute of Metal Physics

Collaborators

V.S. Sobolev Institute of Geology and Mineralogy Konstantin Kokh

Institute of Semiconductor Physics

Oleg Tereshchenko

Baku State University

Ziya S. Aliev, M. B. Babanly

Imamaddin R. Amiraslanov

Kenta Kuroda Yoshifumi Ueda Institute of Physics, ANAS

Tomsk State Univ. (Russia)

Sergey Eremeev

IKERBASQUE, Univ. Pais Vasco &

Donostia International Physics Center

Eugene Krasovskii, Evgueni Chulkov

Hiroshima Synchrotron Radiation Center

Koji Miyamoto, Taichi Okuda, Kenya Shimada

Hirofumi Namatame, Masaki Taniguchi

3D Topological Insulator

Suppressed backscattering

Massless Dirac Fermion

E

Robust to nonmagnetic impurities and defects.
Dissipationless spin transport

Topological field effect transistor

- Extremely large mobility
- Very low consuming power

Consuming power can be much reduced with topological channel

Topological MRAM ? T. Fujita et al., APEX 4 (2011) 094201.

Readout: robust to crystal imperfections e.g. defects, disorders

3D TOPOLOGICAL INSULATORS

- Suppressed backscattering
- Half integer surface QHE
- Topological magnetoelectric effect
- Emergence of Majorana fermion
- Topological FET
- Topological MRAM
- Fault tolerant quantum computing
- ✓ Need to find ideal materials with an ideal Dirac cone SS.
- ✓ New material design with the first principles cal..

Angle resolved photoemission spectroscopy with spin resolution

Theoretical prediction for PbBi₂Te₄

Z₂ topological invariants for 3D - Fu-Kene-Mele, PRL (2007)

$$(-1)^{v_0} = \prod_{i=1}^{8} \prod_{m=1}^{N} \xi_{2m}(\Gamma_i)$$
$$(-1)^{v_k} = \prod_{i=(n_1 n_2 n_3), n_k = 1}^{8} \prod_{m=1}^{N} \xi_{2m}(\Gamma_i)$$

Parity inversion takes place at Z point.

$$v_0$$
; $(v_1v_2v_3)=1$; (111)

cf. v_0 ; $(v_1v_2v_3)=1$; (000) for Bi_2Se_3

Angle-resolved photoelectron spectroscopy

High energy and angular resolution

Role of ARPES for 3D topological insulators

• Coupling parameters like el.-ph. interaction.

High resolution & Spin resolved ARPES + Synchrotron radiation.

Hiroshima Synchrotron Radiation Center

For ARPES on electronic structure study of solids

How to measure the spin polarizations?

3D spin analysis at Swiss Light Source (SLS)

COPHEE (COmplete PHotoEmission Experiment) machine

Two Mott detectors

M. Hoesch et al. J. Electron Spectrosc. Relat. Phenom. 124, 263 (2002).

Surface Dirac cones of Bi₂Y₃

Pioneering work of spin ARPES (Bi₂Se₃)

The observed spin pol. is as small as 20% (<<100%)

Simulated spin polarizations spectra

High angular (momentum) resolution is necessary.

Following spin ARPES study of Bi₂Se₃

H. Pan et al. PRL 106, 257004 (2011).

conduction band at hv=50eV(near Z point of BZ).

A high-degree of spin pol. (~75%) above the Dirac point, while noting below.

Ternary Chalcogenides: TI-V-VI₂

TIBiSe₂

High-quality single crystal

3D character

No vdW gap Bi

Т

B. Yan et al., Europhys. Lett. (2010).

H. Lin et al., Phys. Rev. Lett. (2010).

S. Eremeev et al., JETP Lett. 91, 594 (2010).

HiSOR Beamlines

A more ideal Dirac cone of TIBiSe₂

Photon energy dependence

BL-1

HISOR

Both lower and upper cones are within the bulk gap.

Both lower and upper cones are in the bulk gap for TIBiSe₂.

Spin detector

Very low energy electron diffraction (VLEED) type

100 higher efficiency than Mott
 Minimized instrumental asymmetry

Improved Δk Suitable for TI study

ESPRESSO - Efficient SPin-REsolved SpectroScOpy

Constant energy contour of TIBiSe₂

BL-9B

HISOR

Isotropic constant energy surfaces for TIBiSe₂

New TI with high bulk resistivity: Bi₂Te₂Se

Z. Ren, Y. Ando et al., PRB 82, 241306(R) (2010).

J. Xiong, N. P. Ong et al., Physica E 44, 917 (2012).

Spin resolved ARPES of Bi₂Te₂Se & Bi₂Se₂Te

 k_x (Å⁻¹)

 k_x (Å⁻¹)

Spin resolved ARPES of Bi₂Te₂Se & Bi₂Se₂Te

Atomic disorder effect in GeBi₂Te₄

Atomic disorder in real crystal.

O. G. Karpinsky et al., J. Alloys Compd. (1998).

New topological insulator GeBi₂Te₄ BL-1, 9B

HISOR

Spin resolved ARPES for GeBi₂Te₄

Please see, K. Okamoto and AK et al., Phys. Rev. B 86, 195304 (2012).

Highly spin polarized topological SS near the Dirac point even in the presence of atomic disorder

Summary

ESPRESSO

HISOR

New spin resolved spectrometer based on VLEED

- > Suitable for topological ins. study.
- > 100 times higher efficiency than Mott.
- Best energy and angular resolutions:

 $\Delta E = 7.5 \text{ meV}$ $\Delta \theta = \pm 0.19^{\circ}$

TIBiSe₂: K. Kuroda et al., submitted.
 Bi₂**Te**₂**Se**: K. Miyamoto et al., Phys. Rev. Lett. 109, 166802 (2012).
 GeBi₂**Te**₄: K. Okamoto et al., Phys. Rev. B 86, 195304 (2012).

Remarks on the first principles cal.

Correct description of energy gap and its k-space location.

- Realistic situation like disorder effect is required.
- ✓ Prediction of a new TI with a sufficient energy gap ~1 eV.

Promises to promote a practical use of TI in spintronics !

The review article is now free online. Please visit the JPSJ web site.

Taichi Okuda and Akio Kimura "Spin- and Angle-Resolved Photoemission of Strongly Spin-Orbit Coupled Systems" J. Phys. Soc. Jpn. 82, 021002 (2013).

Special Topics: Frontier of Condensed Matter Physics using Synchrotron Radiation

Thank you very much for your attention !