ES&ES 2013

The dual nature of 4*f* electrons in rare-earth intermetallics: ARPES view

Yu. Kucherenko

Institute for Metal Physics of the Academy of Sciences of Ukraine (Kiev) Collaboration:

PES and ARPES experiments:

University of Technology (Dresden, Germany)

- C. Laubschat
- D.V. Vyalikh
- S. Danzenbächer.
- K. Kummer (now: ESRF, Grenoble, France)
- M. Höppner (now: Max-Plank-Institute for
 - Solid State Research, Stuttgart, Germany)

High-quality single-crystal samples:

Max-Plank-Institute for Chemical Physics of Solids (Dresden, Germany)

- C. Geibel
- C. Crellner

Equipment:

- Swiss light source, Paul Scherrer Institute (Villigen, Switzerland)

- BESSY GmbH (Berlin, Germany)

Magnetic order vs. Kondo lattice

Magnetic order disappears usually continuously \rightarrow Quantum Critical Point (QCP) Formation of heavy quasiparticles (heavy fermions)

• YbRh₂Si₂: Prominent QCP system \rightarrow Very close to a QCP (T_N = 70 mK)

Questions to the electronic structure of YbRh₂Si₂

- What is the role of Yb 4*f* states in the electronic structure at the Fermi level (formation of the Fermi surface) ?
- What 4f hole state in the 4f¹³ configuration of Yb³⁺ forms the ground state in YbRh₂Si₂ ?
- How can the observed experimental results be described in terms of hybridization between the 4*f* states and valence bands ?

Crystal structure

С

ThCr₂Si₂ structure type: The body-centered tetragonal lattice (space group *I4/mmm*, No.139), so called 122 phase

Stacks of alternating elemental layers consisting of only one type of atoms: – Rh – Si – Yb – Si – Rh –

 $YbRh_2Si_2$ usually cleaves along the Yb layers \rightarrow Sample surfaces terminated either by Si or Yb atoms

Photoemission spectra

Bulk Yb ground state – mainly $4f^{13}$ configuration, small admixture of $4f^{14}$

4*f*¹³ final-state configuration (directly observed in PES) could reflect some features of the **Yb ground state**

Crystal electric field (CEF) splitting

The ${}^{2}F_{7/2}$ multiplet term of the Yb $4f^{13}$ final-state configuration (with 4fhole in the *j* =7/2 state) – close to the Fermi level

Tetragonal crystal field splits it into 4 Kramers doublets related to the irreducible representations: $\Gamma_{t6} (m_j = \pm 1/2, \pm 7/2),$ $\Gamma_{t7} (m_i = \pm 3/2, \pm 5/2)$

These states are seen in ARPES as 4 non-dispersing bands (where they are not perturbed by valence bands)

ARPES experiment

CEF resolved hybridization

D.V.Vyalikh, et al. Phys.Rev.Lett. 105, 237601 (2010)

Hybridization model

Rh 4d states create at Yb site the combinations with f character

Computer simulation

Comparison with experiment

Fermi surface from LDA

Band calculations with

- 1) LDA+*U* approach (Yb 4*f* are shifted downwards from the Fermi level),
- Treating Yb 4*f* states as quasi-core (no hybridization with the valence states),
- 3) Yb atoms substituted by Lu (4*f* states are filled and lie far from the Fermi level)

lead to the similar results for the Fermi surface.

"Donut" is the most interesting

- seems to be very sensitive to the hybridization with 4f states;
- can be well observed in ARPES.

ARPES: Problems to be overcome

- Small probing depth + surface states
- k_z not well defined \rightarrow some projection along k_{z}

Discrimination of surface bands

 No contribution of *f* states expected at E = 300 meV
→ Test of ARPES by means of LDA

Experimental ARPES results

LDA calculations (4*f* in core):

- Projected bulk bands
- Slab geometry

• Bright stars around M: only seen in the slab calculations \rightarrow surface bands

Shaded area with a sharp boundary reproduced by the bulk calculations

 \rightarrow projected bulk bands

Projected bands seen in the ARPES cut

Projected bands that create the "Donut" show a sharp boundary at the A point corresponding to the edge of the "Donut" at the top of the bulk BZ

ARPES view of YbRh₂Si₂ Fermi surface

S.Danzenbächer, et al. Phys.Rev.Lett. 107, 267601 (2011)

- At T \cong 10 K, below T_K \cong 25 K
- ARPES : $hv = 45 \text{ eV} \rightarrow \text{strong } Rh 4d$ contributions \rightarrow valence states

• ARPES : Necks near X in contradiction to LDA calculations (sharp edges)

ARPES view of YbRh₂Si₂ Fermi surface

- ARPES: $h_V = 110 \text{ eV}$ \rightarrow strong 4*f* cross-sections
- LDA calculations:

 \rightarrow *f*-character of valence states at Yb-site

 At Necks: strong 4*f* contributions → Heavy 4*f* hybrid bands dominate Fermi surface

Hybridization effects: Opening the necks

Hybridization effects: Closing the hole at Z

Summary: ARPES on YbRh₂Si₂

• High-quality single crystals, excellent cleave, high-resolution spectrometer \rightarrow Nice experimental data

 \Rightarrow Information on the Fermi surface of the quantum critical heavy-fermion system YbRh₂Si₂

- One sheet of Fermi surface ("Donut") can be nicely observed
- Computer simulation (LDA + hybridization model) agree well with the experimental results as well as with the model of renormalized band structure (*G. Zwicknagl; J. Phys.: Cond. Matt. 2011*)
- Electronic states on the Fermi surface have significant contribution of Yb 4*f* states (of Γ_{t7} symmetry)
- 4*f* states of Γ_{t6} symmetry appear at E_F only at some points of the BZ close to the sample surface

 \Rightarrow Next steps:

• Study of the Fermi surface evolution upon chemical doping (over QCP) and temperature variations (over T_{κ})

Linear bands in EuRh₂Si₂

M.Höppner, et al. Nature Commun. 4:1646 doi: 10.1038/ncomms2654 (2013)

photoemission intensity