

What is going on in $K_x Fe_v Se_2$ and FeSe monolayers?

Igor Mazin, Naval Research Laboratory, Washington D. C.

Basic facts

- 1. Crystallography
- 2. ARPES
- 2. Band structure calculations
- 3. Morphology
- 4. Superconductivity (ARPES, INS)

Theoretical problems

- 1. Why DFT calculations so much disagree with ARPES?
- 2. Why superconductivity in monolayers is so fragile?
- 3. If we trust INS, where is the sign change?

Crystallography

Se Fe-vacant order

$K_x Fe_y Se_2$

Magnetic phase at x=0.4, y=0.8 (K₂Fe₄Se₅). Fe vacancies ordered as √5x√5. Exchange-driven band insulator. Most likely completely unrelated with the s/c phase.

Zero doping

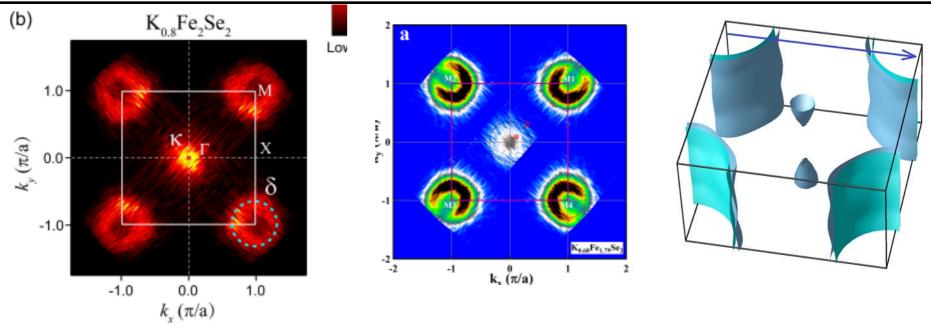
FeSe monolayers

 Insulating asmade, probably magnetic. Become s/c upon annealing under very special prerequisites.

Crystallography

$K_x Fe_v Se_2$

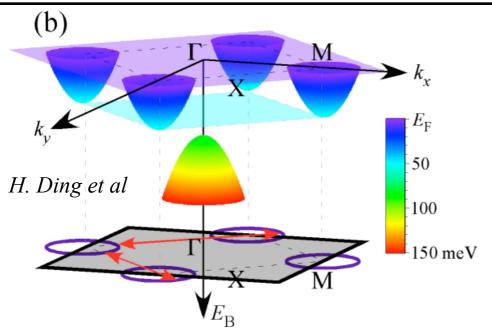
s/c phase (doping always close to n=0.15e/Fe). Most common composition suggestions: K_{0.3}Fe₂Se₂, K_{0.7}Fe_{1.8}Se₂. The latter can be approximated as $K_{2+\delta}Fe_7Se_8$ (δ =0.8, n=0.1). Fe vacancies ordered as $\sqrt{10}$ x $\sqrt{8}$. Stripe AFM metal (similar to pnictides) in the calculation. Possibly the parent phase for s/c.


FeSe monolayers

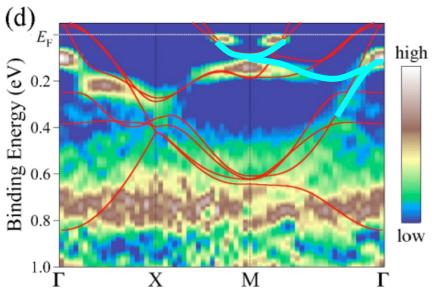
Deposited on graphene: nonmetallic, not s/c. Deposited on SrTiO₃: nonmetallic, not s/c. Deposited on SrTiO₃ previously bombarded with Se, and then annealed: s/c at T~60 K

Haihu Wen's group

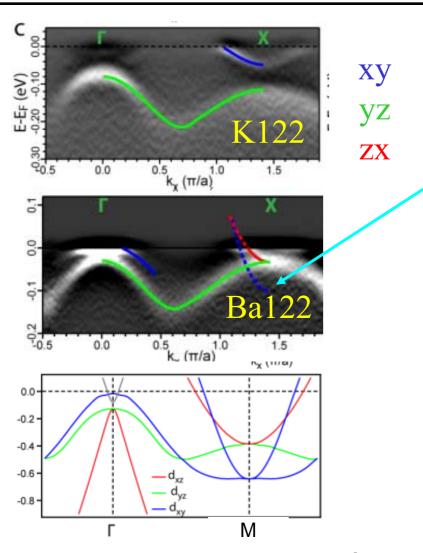
ARPES



Fudan U. IOP Beijing


ARPES is topologically consistent with *stoichiometric* LDA calculations (for KFe₂Se₂), n=0.5.

More ARPES


Allegedly $K_{0.8}Fe_{1.7}Se_2$ (0.1 e per Fe doping) and consistent with the Luttinger count.

Calculated band structure: enormously renormalized (170 meV shift claimed, in reality more like 250), with an implied dramatic topological transition between with doping (0<n<0.1)

More ARPES

blue: d_{xy} ; red: d_{xz} ; green: d_{yz} .

ZX Shen's group

In the geometry used, the band is extinct (Wei Ku, V. Brouet).

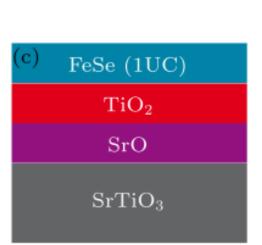
xz and yz bands nondegenerate at M? Note that x/y symmetry can be broken by breaking z/-z symmetry (xz/y,-z)

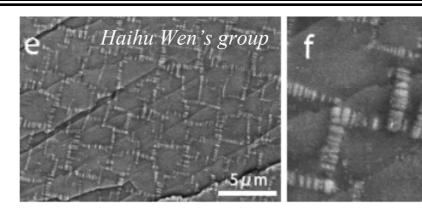
Wrong crystallography? Defects?

Carlo

DFT calculations

- 1. DFT successfully predicts:
 - Magnetic and crystal structure of the 245 phase X.W. Yang et al, Renmin U.
 - Insulating properties of 245 (should be more correlated than 278!)
 - Crystal structure of 278 IIM, unpublished.
 - Fermi surface of 11 (should be at least as correlated as 278)
- 2. Why the relative positions of two bands with the same orbital character are so poorly predicted in 278?
- 3. Why the parent 278 (with different FS topology) never forms, only 10-15% doped version does?

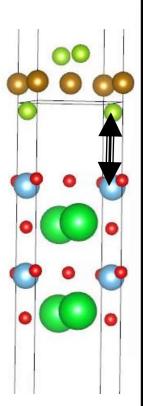

Are we dealing with bulk properties?

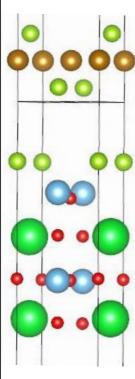


Morphology

"Spider web in 278"

Filamentary phase embedded in a nonsuperconducting matrix

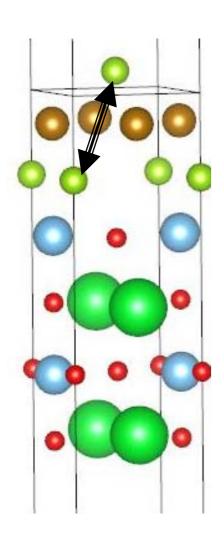



FeSe monolayer

- 1. Why Se etching is needed?
- 2. Where the doping (the same 0.15e!) is coming from?
- 3. Are (1) and (2) related?

DFT calculations

SP structural optimization with consequent WIEN verification. I, unpublished.

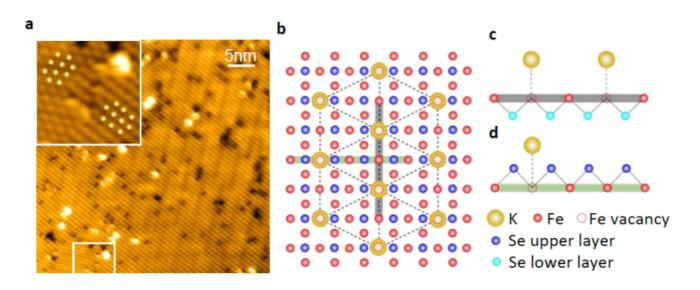

- TiO₂ layer and Se layer do not bind (3.34 A!)
- . No detectable charge transfer
- . No change in the Fermi surface

But this is not what works in the experiment!

- .. Suppose Se bombardment creates $O \rightarrow Se$ substitution?
- 2. Se puckers up by as much as 1.4 A
- 3. ...which makes binding even worth
- 4. But if Se is shared ... (O vacancy)

DFT calculations

Corrolaries:


- Charge transfer (2e per each shared Se)
- Broken xz/-yz symmetry
- Explains why Se "etching" is essential

Is this the whole message? Of course not.

The message is that crystallography at the phase boundary is important

The 278 phase

Xiaxin Ding ... Hai-Hu Wen, cond-mat, 2013

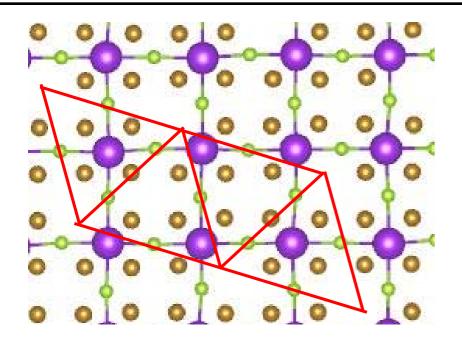
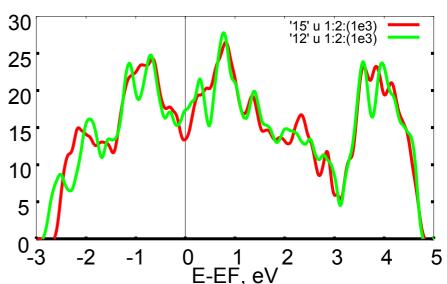

Substantial energy gain from vacancy ordering (IIM, unpb.)

Figure 5 | Atomically resolved topography and the sketch of the 1/8 Fe-vacancy $\sqrt{8} \times \sqrt{10}$

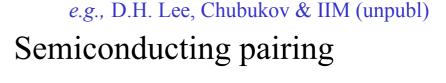
- •Both Fe vacancies and K form a nearly triangular ($\sqrt{10} \times \sqrt{8}$) lattice.
- •Only possible at the surface [N(K)=N(vac)]!
- •Different structure forms in the bulk:

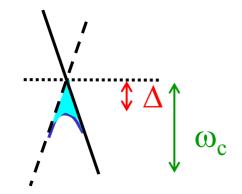


The 278 phase

- •Both Fe vacancies and K form a nearly triangular $(10 \times \sqrt{8})$ lattice.
- •Only possible at the surface [N(K)=N(vac)]!
- •Different structure forms in the bulk (K₄Fe₁₄Se₈): Ks form a square lattice.

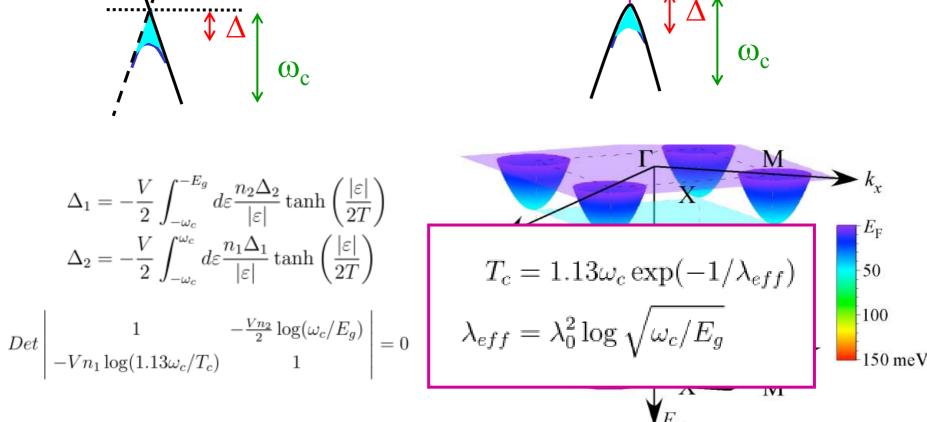
- •Substantial energy gain from K ordering 50 meV/K!
- •Substantial effect on electronic structure (surprising!) (IIM, unpb.)


Superconductivity


- 1. Questions as posed in two years ago:
 - Coexistence or phase separation?
 - d-wave or s-wave?
- 2. Answers from two years ago:
 - Fe₄ plackets represent rigid supermoments of 13 μ_B , exchange field ~40000 T. Coherence length ~10 lattice parameters. Thus, the average misalignment per 100 sites of 0.05° exceeds the paramagnetic limit. Coexistence is <u>impossible</u>.
 - Nodeless d-wave is incompatible with crystal symmetry

Superconductivity: proposed models (historically)

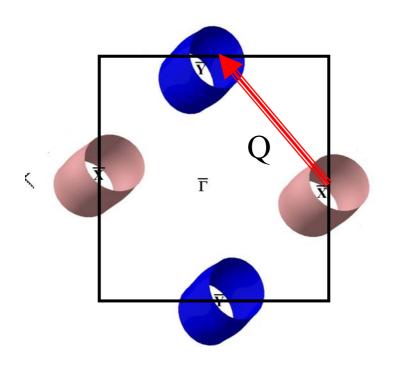
S++ (incipient S± state) Metal pairing



$$\Delta_{1} = -\frac{V}{2} \int_{-\omega_{c}}^{-E_{g}} d\varepsilon \frac{n_{2} \Delta_{2}}{|\varepsilon|} \tanh\left(\frac{|\varepsilon|}{2T}\right)$$

$$\Delta_{2} = -\frac{V}{2} \int_{-\omega_{c}}^{\omega_{c}} d\varepsilon \frac{n_{1} \Delta_{1}}{|\varepsilon|} \tanh\left(\frac{|\varepsilon|}{2T}\right)$$

$$Det \begin{vmatrix} 1 & -\frac{Vn_2}{2}\log(\omega_c/E_g) \\ -Vn_1\log(1.13\omega_c/T_c) & 1 \end{vmatrix} = 0$$

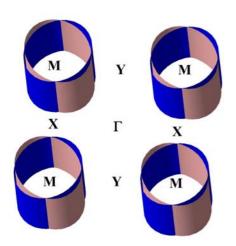


Superconductivity: proposed models (historically)

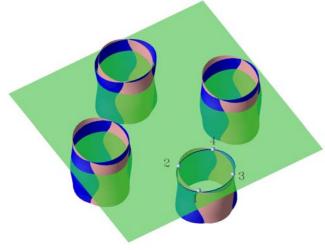
2. Nodeless d;

e.g., Hirschfeld et al, D.H. Lee et al

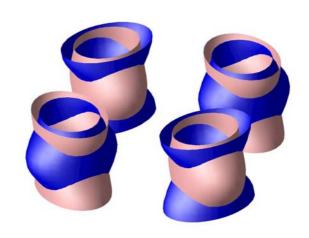
We start with the unfolded BZ

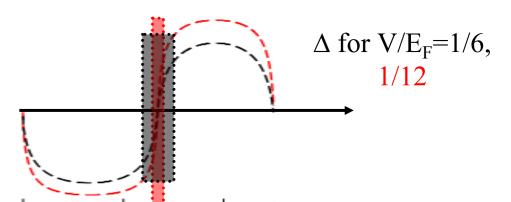

d-wave is:

- (a) Possible (modulo the fact that e-e nesting is weaker than e-h one)
- (b) Natural
- (c) Nodeless



Folding down the "nodeless" d-wave


Ellipticity $\neq 0$, k_z dispersion = 0


Ellipticity $\neq 0$, k_z dispersion $\neq 0$

Ellipticity $\neq 0$, k_z dispersion very large

In 1111 or 11 (or in 122 without k_z dispersion) the nodal lines are infinitely (up to spin-orbit) thin

3. bonding-antibonding $S\pm$;

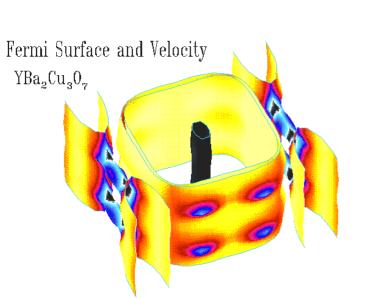
VOLUME 74, NUMBER 12

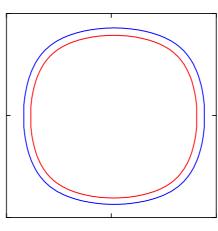
PHYSICAL REVIEW LETTERS

20 March 1995

s-Wave Superconductivity from an Antiferromagnetic Spin-Fluctuation Model for Bilayer Materials

A. I. Liechtenstein, I. I. Mazin, 1,2 and O. K. Andersen 1

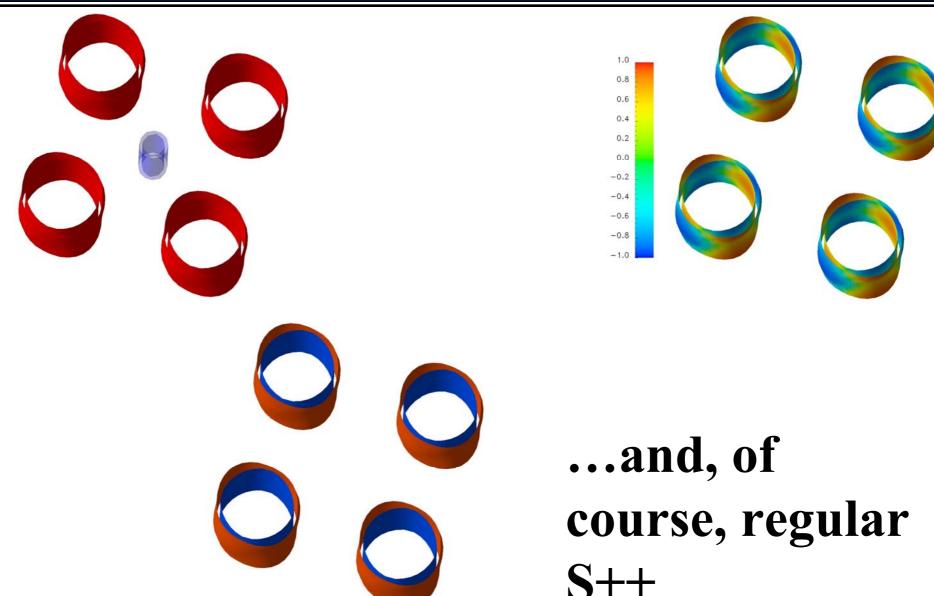

PHYSICAL REVIEW B


VOLUME 45, NUMBER 10

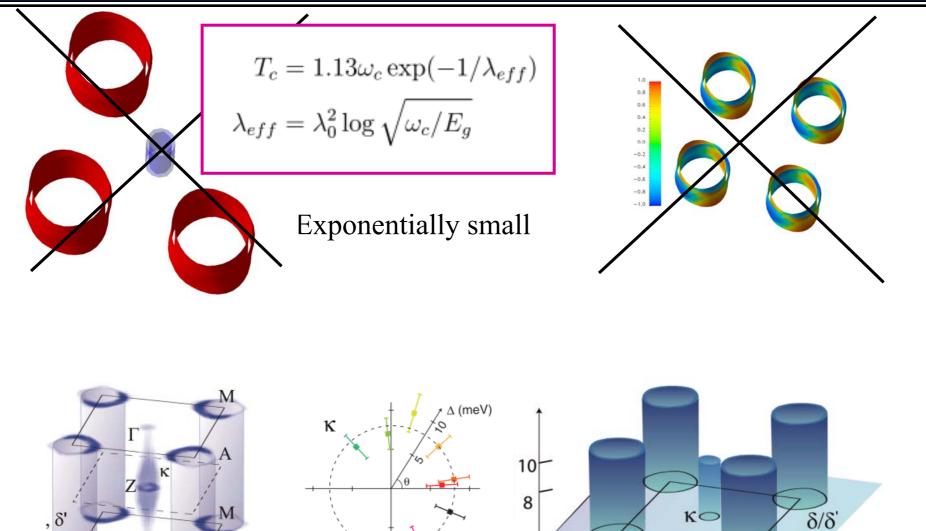
1 MARCH 1992-II

Nodeless -wave pairing in a two-layer Hubbard model

Nejat Bulut and Douglas J. Scalapino Richard T. Scalettar

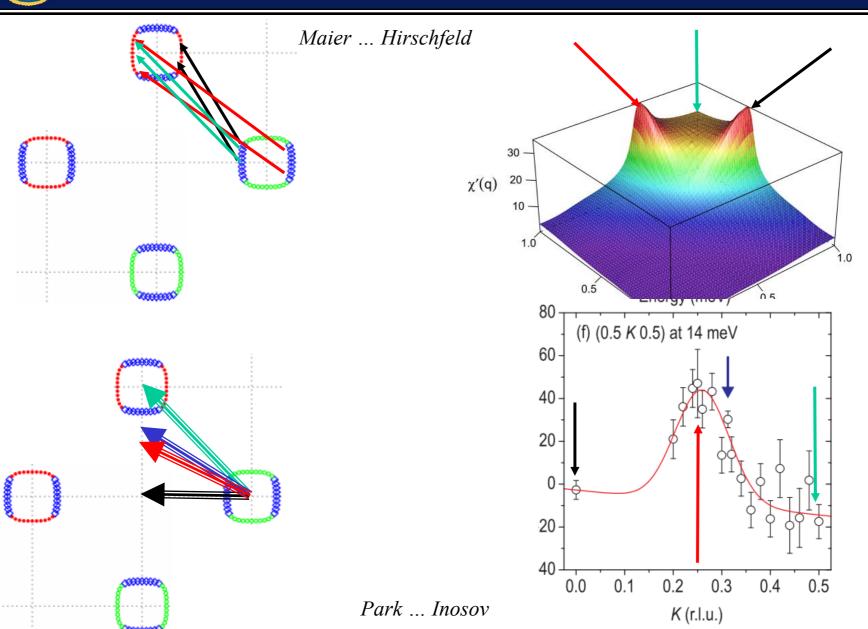


If SF are perfectly AF correlated between the two layers, only bonding-antibonding SF scattering is allowed. Naturally leads a nodeless bonding-antibonding s $_{\pm}$ superconductivity



Three states (summary)

Experimental verification



M. Xu et al, Fudan & Hefei

k,

Neutron peak

Bonding-antibonding S±

- 1. This state cannot be easily "unfolded" onto the one-Fe unit cell!
- 2. But, it allows for sign-changing scattering at q~Q
- 3. This state is only possible if ellipticity and k_z dispersion are very small (as in DFT calculations)
- 4. Pairing involves both "intraband" $(k / | -k \downarrow)$ and "interband" $(k / | Q k \downarrow)$ pairs
- 5. But what can be the pairing interaction in this case?

Conclusions (no conclusions)

THE MAIN CONCLUSION: WE KNOW TOO LITTLE TO MAKE

CONCLUSIONS!

- 1. Superconductivity and measured band structure is likely a surface/interfacial phenomenon. Main indications to that point:
 - a) Similarity between the $K_xFe_vSe_2$ and FeSe monolayers (but only some)
 - b) Incompatibility of measured ARPES with the 122 bulk symmetry
- 2. All models have problems:
 - a) "Incipient s±" is exponentially weak, while Tc is rather large
 - b) Bonding-Antibonding s± (ABS): microscopic mechanism not confirmed by model calculations and neutron resonance is suppressed by symmetry.
 - c) d-wave implies nodes on both M and Γ pockets, and there are neither
- 3. Sign change of the order parameter is likely. Main indications to that point:
 - a) Proximity to (very strong) magnetism
 - b) Neutron resonance