

Tailoring Surface and Thin Film electronic states with Curved Surfaces

J. Enrique Ortega

¹Departamento de Física Aplicada I, Universidad del País Vasco ²Centro de Física de Materiales, Materials Physics Center CSIC-UPV/EHU ³Donostia International Physics Center (DIPC)

> San Sebastián Spain

ES&ES 2013, May 21-23, Kyiv, Ukraine

Scattering at noble metal superlattices probed with ARPES

Stepped surfaces

1D-lattice

ARPES

Dislocation networks

2D-lattice

Tunable step lattices: curved surfaces

We aim at fabricating samples that can be mounted using standard holders and be prepared through regular cleaning procedures

Flat versus curved crystals in ARPES

0.3

ARPES measurements from flat and curved crystals with the same crystallographic orientations are completely analogous

Curved surfaces for what? Noble metals: structure/electronic interplay?

What kind of structural instabilities arise by approaching in 1D nesting of the Shockley state in a step superlattice?

Outline

• ARPES from noble metal curved surfaces:

✓ tuning umklapps and gaps
✓ revisiting step barrier strength

Thin films on curved surfaces:
✓ Ag/c-Au(111): lateral scattering in quantum-wells
✓ BiAg₂/c-Ag(111): SOC bands

c-Cu(111)

Step edge roughening in c-Cu(111)

M. Corso et al., J. Phys. Condens. Matter 21, 353001 (2009).

M. Corso et al., J. Phys. Condens. Matter 21, 353001 (2009).

Step scattering through curved surfaces I: terrace-size effect

Step scattering through curved surfaces II: wave function plane

Thin films on curved surfaces

- ➢ Ag films on c-Au(111)
- > $BiAg_2$ monolayer on c-Ag(111)
- ➤ Ag monolayer on c-Cu(111)

Tuning step density (d)

Quantum wells

Stepped quantum wells

-0.2

0.2

 $\begin{array}{c} 0.0 \\ k_x (\text{Å}^{-1}) \end{array}$

QW and surface states exhibit the same superlattice nature in thin stepped films

Stepped quantum wells

Wave function t-quantization axis [111] Band shift ∆E (meV) Reciprocal π/d space surface n=1 n=2 n=3 state Real space

Terrace size effect

Lateral scattering at stacking faults?

30 nm

Mugarza et al. (unpublished) and PRB **82,** 113413 (2010)

Scattering in a Rashba surface alloy

Quantum Interference of Rashba-Type Spin-Split Surface State Electrons

Hiroyuki Hirayama,* Yuki Aoki, and Chiaki Kato Department of Materials Science and Engineering, Tokyo Institute of Technology, J1-3, 4259 Nagatsuda, Midori-ku, Yokohama 226-8502, Japan (Received 2 April 2011; published 7 July 2011)

We studied the quantum interference of electrons in the Bi (p_x, p_y) orbital-derived j = 1/2 spin-split surface states at Bi/Ag(111) $\sqrt{3} \times \sqrt{3}$ surfaces of 10 monolayer thick Ag(111) films on Si(111) substrates. Surface electron standing waves were observed clearly at the energy (*E*) below the intersection of the two spin-split downward dispersing parabola bands (E_x) . The *E* dependence of the standing wave pattern reveals the dispersion as the average of the two spin-split surface bands due to the interference between $|(k + \Delta), \uparrow\rangle$ and $| - (k - \Delta), \downarrow\rangle$ for $(|(k - \Delta), \downarrow\rangle)$ and $| - (k + \Delta), \downarrow\rangle$ states. In contrast, it was impossible to deduce the dispersion from the standing wave pattern at $E \ge E_x$ because the surface electron cannot find its backscattered state with the same spin polarization.

□ No standing waves observed in region I (E > +0.4 V)

 \Box Standing waves in region II (E< + 0.4 V)

$BiAg_2/c-Ag(111)$

(111)-like band with a small downward shift for a high step density

$BiAg_2/Ag(111)$

Π

 $-E_{\rm F}~({\rm eV})$

BiAg₂/Ag/c-Au(111)

Summary

We probe lateral scattering of electrons, and wave function properties at stepped systems using ARPES

- 1. In noble metal surfaces, we observe weak scattering at step lattices.
- 2. QW states of thin stepped Ag films exhibit scattering at stacking fault planes of the film
- 3. Rashba split states of the BiAg₂ monolayer are quasi transparent to monatomic steps, but undergo scattering at stacking faults.

Acknowledgments

J. Lobo, F. Schiller (Nanophysics Laboratory, San Sebastian) E. E. Krasovskii (Donostia International Physics Center, San Sebastian) A. Mugarza, S. Schirone, P. Gambardella (ICN, Barcelona)

Thanks for your attention!!

