

k-resolved electronic structure by soft-X-ray ARPES: From 3D systems to buried heterostructures

Swiss Light Source, Paul Scherrer Institute, Switzerland

V.N. Strocov

Outline

- 1.Why (and why not) ARPES in the soft-X-ray range?
- probing depth, 3D momentum resolution and resonant photoemission
- 2. Instrumentation
- 3. Spectroscopic abilities of SX-ARPES and results
- from 3D electronic structure to buried heterostructures and impurities

Why Soft-X-Ray ARPES (*hv* ~ 500-1500 eV)?

Virtue 1: Increasing λ

increasing bulk sensitivity
buried impurities, interfaces and heterostructures

\Rightarrow Virtue 2: Improving *intrinsic resolution* $\Delta k_z = \lambda^{-1}$

- reduction of Δk_z broadening
- sharply defined 3D k-vector
- combination with free-electron final states \Rightarrow 3D materials

Virtue 3: Elemental specificity through resonant photoemission

• combination with increasing $\lambda \Rightarrow$ buried interfaces, heterostructures and impurities

Further virtues: Regular atomic-like matrix elements ...

Challenges of SX-ARPES

- ΔE of a few tens meV (vs a few meV in VUV-ARPES)
- *e-ph* scattering destructive for **k**-resolution (photoelectron wavelength ~ thermal motion):

$$I^{coh} = W(T)I_{T=0}^{coh}$$

(W(T) = exp($-\Delta G^2 U_0^2(T)$), with $\Delta G^2 \propto E$ and $U_0^2 \propto T$)
- liquid-He cooling

loss of photoexcitation cross-section by 2-3 orders of magnitude
efficient detectors and high photon flux instrumentation

ADRESS (ADvanced RESonant Spectroscopies) Beamline at SLS

- RIXS (Resonant Inelastic X-ray scattering) and ARPES endstations
- soft-X-ray radiation with circular and 0-180° variable linear polarizations
- energy range 300 1600 eV
- high resolution $\Delta E \sim 30 \text{ meV}$ @ 1 keV
- collimated-light PGM optical scheme

• flux up to 1.5x10¹³ ph/s/0.01%BW: factor of 10 to 100 increase compared to best available beamlines ⇒ breakthrough of the cross-section problem

SX-ARPES Endstation *@* **ADRESS:** Geometry

• grazing incidence at 20° to increase photoyield (factor of 2 compared to 45°)

- horizontal rotation axis to balance the vertical (<20 µm) and horizontal (74µm) light footprint
- rotatable analyzer: parallel slit
 orientation ⇒ symmetry analysis of the valence states

V.S., J. Synchr. Rad **20** (2013) analyser slit orientation sample rotation by tilt light beam α primary sample rotation PDA

manipulator axis

3D k-vector definition of SX-ARPES: Bandstucture and Fermi surface of VSe₂

- quasi-2D structure with weaker interlayer interaction
- significant 3D-lity due to Se $4p_z$ orbitals

- Experimental *E*(k)

- k_z by varying hv around 900 eV
- $\Delta E \sim 110 \text{ meV}$

- excellent statistics in a few min despite the cross-section loss (~1800 for V3*d* and 35 for Se 4*p* vs *hv*=50eV)
- intense and sharp structures $\Rightarrow e-ph$ scattering effects (spectral weight transfer to 3D-DOS and **k**-broadening) are insignificant at our *T*=10.7K despite low *T*_D=220K
- significant 3D-lity of Se $4p_z$ orbitals
- agreement with GGA-DFT (*P. Blaha, TU Wien*)

- Experimental 3D Fermi surface of VSe₂

• extraordinary clarity of the experimental data (no image enhancement): Sharp definition of 3D wavevector and regular matrix elements in soft-X-ray energies

• agreement with GGA-DFT (P. Blaha, TU Wien)

- Origin of 3-dimensional CDWs
- Unusual 3-dimensionality of CDWs:

 $\mathbf{q}^{\text{CDW}} = \mathbf{q}_{//} \mathbf{q}_{z} (q_{z} \sim k_{z}^{\text{BZ}/3})$

- Perpendicular FS cut in MLL'M' plane

• 3D warping to support nesting close q_z^{CDW}

- V.S. et al., PRL 109 (2012) 086401

• Autocorrelation peak at $\mathbf{q}_{//}^{\text{CDW}}$ and shifted to q_z^{CDW} by commensurization

Penetrating ability of SX-ARPES: Band structure of GaAs through amorphous As layer

M. Kobayashi et al (SLS); samples: Uni Tokyo

• large λ required: Soft-X-ray ARPES

hv = 287 eV

hv = 892 eV

HH

LH

SO

- acquisition time 3 min
- GaAs signal piles up with hv
- New diagnostics tool for MBE grown films: Applications in microelectronics
- M. Kobayashi et al., Appl. Phys. Lett. 101 (2012) 242103

Ferromagnetism of diluted magnetic semiconductor GaMnAs

- Role of impurity vs band states in the ferromagnetism of GaMnAs:
- does Mn form an impurity band?
- energy alignment of the Mn impurity band?
- hybridization with the host GaAs bands?

• HAXPES study in A.X. Gray *et al*, Nature Mat. 11 (2012) 957: Mn weight below E_F ; Ferromagnetism as a combination of the two models

Elemental specificity of SX-ARPES: Resonant ARPES of diluted magnetic semiconductor GaMnAs

M. Kobayashi et al (SLS); samples: Uni Tokyo

- Mn concentration only 2.5% of Ga
 ⇒ hard to see unless resonantly enhance Mn 3d weight
- Resonance on ferromagnetic XAS peak ⇒ ferromagnetic non-dispersive Mn 3*d* impurity band just below the VBM

- Linear dichroism

• Intensity at the ferromagnetic resonance \Rightarrow Mn 3*d* impurity band hybridizes with LH but only weakly with HH band

Ferromagnetism of diluted magnetic semiconductor GaMnAs

• Occupied Mn 3*d* impurity band hybridizing with GaAs host band

• Ferromagnetism induced by GaAs mediated exchange between Mn atoms

• Description starting from the Anderson impurity model

- M. Kobayashi et al., http://arxiv.org/abs/1302.0063 (submitted to Phys. Rev. Lett.)

Buried interfaces: Resonant SX-ARPES of LaAlO₃/SrTiO₃

2DEG at the LAO/STO interface:

- electrons delivered by Ti³⁺ ions
- Critical LAO thickness > 4 u.c.
 ⇒ SX-ARPES required

• Idea: Use Ti³⁺ **resonant** SX-ARPES to enhance the 2DEG signal

Depth Profiling of 2DEG at the LaAlO₃/SrTiO₃ interface

C. Cancellieri, M. Reinle-Schmitt et al; samples: Uni Geneve

- measurements @ $RT \Rightarrow$ averaging in k-space
- comparison of insulating (3 uc LAO) and conducting (6 uc LAO) samples

• Angle-dependent XPS to resolve the 2DEG depth profile

• k-integration due to RT

$$I(\theta) = G(\theta, \phi) \int_0^\infty R(z) e^{-z/\lambda \cos \theta} \,\mathrm{d}z$$

• $I(\theta)$ = Laplace transform of R(z)

• 2DEG is located within **1.0±0.3 u.c.** on the STO side of the interface

- C. Cancellieri et al., PRL 110 (2013) 137601

Fermi surface and bandstructure of the interface states

- T = 11 K to suppress *e-ph* scattering
- •FS mapping at 2*p* resonance of Ti^{3+} at hv = 460.2 eV
- •Experimental $\Delta E \sim 80 \text{ meV}$

- FS shape of crossed 3d_{xy}-like cigars (G. Berner *et al*, Phys. Rev. Lett. **110** (2013) 247601
 talk of M. Sing; N. Plumb *et al*, arXiv:1304.5948)
- different FS sheets depending on $\mathbf{K}_{//}$ and polarization

A. Filippetti, P. Ghosez & D. Fontaine

• composite interface state with subbands of different symmetries

• different sample preparations:

- Luttinger count of the FS area follows n_e from transport properties \Rightarrow coherent interface conductivity with insignificant contribution of ox-vacancies

- interface charge varies and differs from 0.5 e/u.c. (deviations from both structural deformation and polar catastrophe model)

- C. Cancellieri et al., arXiv:1307.6943 (2013)

Comparison of VUV- and SX-ARPES

	VUV-ARPES	SX-ARPES
ΔE	meV-scale: quasiparticle interactions	tens-of-meV scale global valence band
probing depth λ	few Å: simple surfaces	~ 15 Å: bulk and buried heterostructures
k _z definition	$\Delta k_z \sim k_z^{BZ}$ and non-FE final states: mostly 2D systems	$\Delta k_z \ll k_z^{BZ}$ and FE final states: 3D systems

- SX-ARPES spectroscopic properties:
- 3D bulk band structure (FS and CDWs in VSe₂, FS in perovskite LSMO...)
- Enhanced probing depth: Band structure of GaAs behind thick cap layer ...
- Elemental specificity through resonant photoemission: Ferromagnetic impurity band in GaMnAs, depth localization and Fermi surface of LAO/STO ...
- Depth profiling with standing X-ray waves excited ARPES

• Flux performance of ADRESS **⇒ From 3D materials to buried heterostructures**

SX-ARPES team

V.N.S. M. Kobayashi (BL Scientist) (PostDoc)

L. Lev C. Hess (PostDoc) (BL Technician)

Collaborators at SLS

External collaborators

T. Schmitt M. Shi L. Patthey (RIXS) (SIS beamline) (now SwissFEL)

Support from PSI

Optics (group of U. Flechsig), ID (group of T. Schmidt), Controls (X. Wang, J. Krempasky) *et al*

