Understanding magnetic properties of $M \text{CrS}_2$ (*M*=Li, Na, K, Cu, Ag)

A. Ushakov 1,2 , D. Kukusta 1,3 , **A. Yaresko** 1 , and D. Khomskii 2

 ¹ Max Planck Institute for Solid State Research, Stuttgart, Germany
 ² II. Physikalisches Institut, Universität zu Köln, Cologne, Germany
 ³ Institute for Metal Physics, Kiev, Ukraine

Electronic Structure and Electron Spectroscopies, Kiev, 20-23 May 2013

Outline

Motivations

Crystal and electronic structures

Magnetic interactions between Cr spins

Conclusions

Magnetic Cr ions on a triangular lattice $\downarrow\downarrow$ geometrical frustrations $\downarrow\downarrow$ unusual magnetic properties

J < 0: frustrated ground state with 120° spin structure ($\vec{S}_1 + \vec{S}_2 + \vec{S}_3 = 0$)

3D pyrochlor lattice

e.g.

- pyrochlor compounds
- spinels (MCrX₂)

All configurations with $\vec{S_1} + \vec{S_2} + \vec{S_3} + \vec{S_4} = 0$ are degenerate

competing interactions

a linear chain of classical spins \vec{S} with AFM nn J_1 and nnn J_2 interactions:

Energy: $E = S^2(J_1 \cos \phi + J_2 \cos 2\phi)$

where ϕ is the angle between the neighbouring spins

competing interactions

Multiferroics (magnetism vs. ferroelectricity)

magnetism (d^n) or ferroelectricity (d^0 , d^{10})

Multiferroics (magnetism vs. ferroelectricity)

magnetism (d^n) or ferroelectricity (d^0 , d^{10})

broken inversion symmetry \downarrow magnetism and ferroelectricity (BiFeO₃)

Multiferroics (magnetism vs. ferroelectricity)

```
magnetism (d^n) or ferroelectricity (d^0, d^{10})
```

```
broken inversion symmetry
↓
magnetism and ferroelectricity (BiFeO<sub>3</sub>)
```

```
non-collinear spin-spiral magnetic structure

\downarrow\downarrow

broken inversion symmetry

\downarrow\downarrow

multiferroicity (TbMnO<sub>3</sub>, CoCr<sub>2</sub>O<sub>4</sub>)
```

D.I. Khomskii, JMMM 306, 1 (2006)

AgCrS₂: A Spin Driven Ferroelectric

K. Singh, A. Maignan, C. Martin, and Ch. Simon, Chem. Mater. 21, 5007 (2009)

- magnetic order below T_N =42 K
- anomaly of the dielectric permittivity at T_N
- electrical polarization vanishes above T_N
- P decreases as H increases

Unconventional magnetic order in AgCrS₂

- rhombohedral $(R3m) \rightarrow$ monoclinic (Cm) transition at T_N
- split nn Cr-Cr distances
- double stripe AFM magnetic order in the ab plane

$$E_{ds} = JS^2$$
 $E_{FM} = 3JS^2$ $E_{120^\circ} = \frac{3}{2}JS^2$
F. Damay, *et al* PRB **83**, 184413 (2011)

A surprising variety of magnetic phases:

- LiCrS₂: 120° AFM order in the ab plane; AFM along c (T_N =55 K)
- NaCrS₂: non-collinear spin-spiral structure (T_N =19 K)
- KCrS₂: FM in the ab plane; AFM along c (T_N =38 K)
- CuCrS₂: non-collinear spin-spiral structure (T_N =39 K)
- AgCrS₂: AFM double stripe; AFM along c (T_N =42 K)
- AuCrS₂: AFM double stripe structure (T_N =55 K)

A surprising variety of magnetic phases:

- LiCrS₂: 120° AFM order in the ab plane; AFM along c (T_N =55 K)
- NaCrS₂: non-collinear spin-spiral structure (T_N =19 K)
- KCrS₂: FM in the ab plane; AFM along c (T_N =38 K)
- CuCrS₂: non-collinear spin-spiral structure (T_N =39 K)
- AgCrS₂: AFM double stripe; AFM along c (T_N =42 K)
- AuCrS₂: AFM double stripe structure (T_N =55 K)

Can we understand this sequence of magnetic orders?

Crystal structures

- triangular CrS_2 layers with abc stacking separated by M layers
- trigonally distorted CrS₆ octahedra (trigonal anti-prisms)
- Li, Na, K: MS_6 anti-prisms; Cu, Ag: MS_4 pyramids; Au: AuS₂ dumbbells
- AgCrS₂ and CuCrS₂: non-centrosymmetric R3m structure with two S ions

Bond lengths

M	group	$d_{ m CrCr}$ (Å)	$d^{av}_{ m CrS}$ (Å)	Cr-S-Cr angle	ab magnetic order
Li	$P\overline{3}m1$	3.4515	2.4063	91.7	120° AFM
Na	$R\bar{3}m$	3.5561	2.4249	94.3	spin spiral
K	$R\bar{3}m$	3.6010	2.4123	96.6	FM
Cu	R3m	3.4728	2.4036	90.6, 94.6	spin spiral
Ag	R3m	3.4979	2.4085	92.2, 94.1	AFM double stripes
Au	$R\bar{3}m$	3.4826	2.3862	93.7	AFM double stripes

- $d_{\rm CrS}^{av}$, i.e. CF splitting, does not change much
- $d_{\rm CrCr}$ increases from 3.4515 Å in Li to 3.6010 Å in K
- Cr-S-Cr bond angle also increases from 91.7 $^\circ$ to 96.6 $^\circ$

Bond lengths

M	group	$d_{ m CrCr}$ (Å)	$d^{av}_{ m CrS}$ (Å)	Cr-S-Cr angle	ab magnetic order
Li	$P\overline{3}m1$	3.4515	2.4063	91.7	120° AFM
Cu	R3m	3.4728	2.4036	90.6, 94.6	spin spiral
Au	$R\bar{3}m$	3.4826	2.3862	93.7	AFM double stripes
Ag	R3m	3.4979	2.4085	92.2, 94.1	AFM double stripes
Na	$R\bar{3}m$	3.5561	2.4249	94.3	spin spiral
K	$R\bar{3}m$	3.6010	2.4123	96.6	FM

- $d_{\rm CrS}^{av}$, i.e. CF splitting, does not change much
- $d_{\rm CrCr}$ increases from 3.4515 Å in Li to 3.6010 Å in K
- Cr-S-Cr bond angle also increases from 91.7 $^{\circ}$ to 96.6 $^{\circ}$

Magnetic order changes from 120° AFM to FM with the increase $d_{\rm CrCr}$

 $\operatorname{Ag}^{1+}\operatorname{Cr}^{3+}\operatorname{S}_2^{2-} \Rightarrow \operatorname{Ag} d^{10}s^0$, $\operatorname{Cr} d^3$, $\operatorname{S} p^6$

- S 3s and 3p completely filled
- Ag 4d filled; Ag 5s empty

Hund's coupling:

• J_H : Cr $d \to d_{\uparrow} + d_{\downarrow}$

crystal field:

- Δ_{cub} : Cr $d \to t_{2g}$ + e_g
- $\Delta_{trig}: t_{2g} \to a_1 + e_\pi; e_g \to e_\sigma$
- e_{π} and e_{σ} : π and σ bonds with S p

half-filled Cr " t_{2g} " states \Rightarrow no charge or orbital degrees of freedom \Rightarrow the Heisenberg model should work

Spin-spiral calculations

Magnetization direction is determined by polar angles

- $\theta = const = 0$
- $\phi = \phi_0 + \vec{q} \cdot \vec{R}$

where \vec{q} is the wave vector of a spin spiral and \vec{R} is a translation vector If spin-orbit coupling is neglected only off-diagonal in spin terms of the Hamiltonian depend on \vec{q} :

$$H^{sp} = \left[V_{\uparrow}(r) - V_{\downarrow}(r)\right] \left(\begin{array}{cc} 0 & e^{-i\phi_0} \sum_{\vec{R}} e^{-i\vec{q}\cdot\vec{R}} \\ e^{i\phi_0} \sum_{\vec{R}} e^{i\vec{q}\cdot\vec{R}} & 0 \end{array}\right)$$

Spin-spiral calculations

Magnetization direction is determined by polar angles

- $\theta = const = 0$
- $\phi = \phi_0 + \vec{q} \cdot \vec{R}$

where \vec{q} is the wave vector of a spin spiral and \vec{R} is a translation vector If spin-orbit coupling is neglected only off-diagonal in spin terms of the Hamiltonian depend on \vec{q} :

$$H^{sp} = \left[V_{\uparrow}(r) - V_{\downarrow}(r)\right] \left(\begin{array}{cc} 0 & e^{-i\phi_0} \sum_{\vec{R}} e^{-i\vec{q}\cdot\vec{R}} \\ e^{i\phi_0} \sum_{\vec{R}} e^{i\vec{q}\cdot\vec{R}} & 0 \end{array}\right)$$

The Hamiltonian matrix is doubled but remains finite

$$H = \begin{pmatrix} H_{\downarrow \vec{k} - \frac{1}{2}\vec{q}, \downarrow \vec{k} - \frac{1}{2}\vec{q}} & H_{\downarrow \vec{k} - \frac{1}{2}\vec{q}, \uparrow \vec{k} + \frac{1}{2}\vec{q}} \\ H_{\uparrow \vec{k} + \frac{1}{2}\vec{q}, \downarrow \vec{k} - \frac{1}{2}\vec{q}} & H_{\uparrow \vec{k} + \frac{1}{2}\vec{q}, \uparrow \vec{k} + \frac{1}{2}\vec{q}} \end{pmatrix}$$

The total energy $E(\vec{q})$ can be calculated for an arbitrary single \vec{q} spin spiral

Real-space spin structures

Real-space spin structures

the Heisenberg (and the total) energies of the double stripe and 90° structures are equal

Exchange coupling constants

 90° vs. DS odd chains: $JS_0S_{2i+1,j}=0$

 $JS_0S_{2i+1,j} + JS_0S_{-2i-1,j} = 0$

• S₂ even chains:

 $JS_0S_{2i,j} = JS_0S_{2i,j}$

in the HT phase $J_{nx} = J_{ny} = J_n$

$$\varepsilon_{1}(\mathbf{q}) = J_{1} \left[2\cos(\sqrt{3}q_{x}a/2)\cos(q_{y}a/2) + \cos(q_{y}a) \right]$$

$$\varepsilon_{2}(\mathbf{q}) = J_{2} \left[\cos(\sqrt{3}q_{x}a) + 2\cos(\sqrt{3}q_{x}a/2)\cos(3q_{y}a/2) \right]$$

$$\varepsilon_{3}(\mathbf{q}) = J_{3} \left[2\cos(\sqrt{3}q_{x}a)\cos(q_{y}a) + \cos(2q_{y}a) \right]$$

$E(\vec{q})$ calculated within LSDA

- AFM order along c ($q_z = \pi/d_c$) is preferable
- LiCrS₂: minimum at \vec{q}_{120}
- AgCrS₂: $\vec{q} \approx \vec{q}_{90}$ and $\vec{q} = \vec{q}_{120}/2$ are almost degenerate
- KCrS₂: minima at small \vec{q} i.e. "almost" FM

$E(\vec{q})$ calculated within LSDA

- AFM order along c ($q_z = \pi/d_c$) is preferable
- LiCrS₂: minimum at \vec{q}_{120}
- AgCrS₂: $\vec{q} \approx \vec{q}_{90}$ and $\vec{q} = \vec{q}_{120}/2$ are almost degenerate
- KCrS₂: minima at small \vec{q} i.e. "almost" FM

The tendency Li (120° AFM) \rightarrow Ag (DS) \rightarrow K (FM) is reproduced

A least-square fit to J_1 - J_3 , J_z Heisenberg model

M	J_1	J_2	J_3	J_z
Li	5.17	0.46	2.73	0.93
Cu	0.16	0.03	1.51	0.82
Ag	-0.14	-0.13	2.45	0.74
Na	-4.06	0.23	2.49	0.09
K	-5.45	0.19	2.11	0.05

- J_1 changes sign from AFM to FM
- J_2 can be neglected
- J_3 is strong and nearly constant
- J_z may be important

What stabilizes 90° order in AgCrS₂

$$z(\mathbf{q}) = J_z \left[2\cos\left(\frac{q_z c}{3} - \frac{q_x a}{2\sqrt{3}}\right) \cos\left(\frac{q_y a}{2}\right) + \cos\left(\frac{q_z c}{3} + \frac{q_x a}{\sqrt{3}}\right) \right]$$

Cr layers are displaced $$\downarrow$$ J_z affects in-plane order

but $\varepsilon_{III} < \varepsilon_{II}$

ES&ES 2013

What stabilizes 90° order in AgCrS $_2$

$$z(\mathbf{q}) = J_z \left[2\cos\left(\frac{q_z c}{3} - \frac{q_x a}{2\sqrt{3}}\right) \cos\left(\frac{q_y a}{2}\right) + \cos\left(\frac{q_z c}{3} + \frac{q_x a}{\sqrt{3}}\right) \right]$$

Cr layers are displaced $$\downarrow$$ J_z affects in-plane order

but $\varepsilon_{III} < \varepsilon_{II}$

90° (DS) order is stabilized by monoclinic distortions

ES&ES 2013

Various contributions to the nn superexchange interaction J_1

) AFM kinetic exchange due to direct t_{2g} - t_{2g} hopping

- (b) AFM t_{2g} -S p- t_{2g} superexchange
- (c) FM t_{2g} - t_{2g} interaction due to S p Hund's coupling
- (d) FM exchange due to t_{2g} -S p- e_g hopping
- + $J_{1a}(d_{CrCr})$: depends strongly on d_{CrCr} varies from Li to K
- + $J_{1b}(d_{\rm CrS})$: constant AFM contribution as $d_{\rm CrS}$ does not change
- $J_{1c}(d_{\rm CrS})$: excluded by test calculations
- + $J_{1d}(d_{CrS})$: constant FM contribution; $|J_{1d}| > |J_{1b}|$

 J_1 changes sign due to the competition between AFM J_{1a} and FM $J_{1d}(+J_{1b})$

other J's

a plausible path for J_3 : AFM $t_{2g}\mbox{-}\mbox{S}\ p\mbox{-}\mbox{Cr}\ e_g\mbox{-}\mbox{S}\ p\mbox{-}\ t_{2g}$ superexchange

 J_{z} is apparently mediated by $M \ s$ states

other J's

a plausible path for J_3 : AFM $t_{2g}\mbox{-}\mbox{S}\ p\mbox{-}\mbox{Cr}\ e_g\mbox{-}\mbox{S}\ p\mbox{-}\ t_{2g}$ superexchange

 J_z is apparently mediated by $M\ s$ states

- **q** LSDA calculations give "too AFM" J_1 (KCrS₂ is not FM)
- a electronic correlations in Cr d shell are important: in LSDA+U calculations AFM J_{1a} is suppressed whereas FM J_{1d} weakly depends on $U \Rightarrow$ correct magnetic order

Conclusions

- Our results allowed us to explain the very interesting sequence of magnetic phases in MCrS₂ compounds, in which the magnetic order in triangular Cr layers changes from purely AFM (120°) in LiCrS₂ via double-stripe structure of AgCrS₂ to FM layers in KCrS₂
- These magnetic structures appear because of competing the nearest neighbor exchange interaction J_1 , which changes sign from AFM to FM as $d_{\rm CrCr}$ increases, and AFM third-neighbor J_3
- In turn, the strength of J_1 is determined by the competition of two contributions of opposite signs:
 - \circ AFM Cr t_{2g} -Cr t_{2g} exchange
 - $\circ~$ FM exchange between half-filled Cr t_{2g} and empty Cr e_g states via S p states

Conclusions

- Our results allowed us to explain the very interesting sequence of magnetic phases in MCrS₂ compounds, in which the magnetic order in triangular Cr layers changes from purely AFM (120°) in LiCrS₂ via double-stripe structure of AgCrS₂ to FM layers in KCrS₂
- These magnetic structures appear because of competing the nearest neighbor exchange interaction J_1 , which changes sign from AFM to FM as $d_{\rm CrCr}$ increases, and AFM third-neighbor J_3
- In turn, the strength of J_1 is determined by the competition of two contributions of opposite signs:
 - \circ AFM Cr t_{2g} -Cr t_{2g} exchange
 - $\circ~$ FM exchange between half-filled Cr t_{2g} and empty Cr e_g states via S p states

Open question:

Multiferroic properties of AgCrS $_2$