Ultra-low temperature ARPES on strontium ruthenates

Volodymyr Zabolotnyy, IFW Dresden, Institute for Solid State Research Electronic Structure and Electron Spectroscopies 2013

Thanks to:

- D. V. Evtushinsky
- A. A. Kordyuk
- J. Maletz
- J. Trinkauf
- J. Geck
- S. V. Borisenko
- B. Büchner
- M. Couco A. Veccione R. Fittipaldi

IFW

- A. Varykhalov
- E. Rienks
- S. Thirupathaiah
- O. Schwarzkopf
- R. Follath

T. K. Kim

BESSY

E. Carleschi B. Doyle

BESSY 1³ station

Photoemission principle

Crystal growth & quality

Electronic structure: summary of available data

ARPES Fermi surface

Matzdorf 289, 746 (2000)

Surface aging not a panacea

Systematic hv-dependence

Systematic hv-dependence

Surface emission

General case

Layered Sr₂RuO₄

Bulk $\alpha^{b}, \beta^{b}, \gamma^{b}$

Reconstructed surface

layer α^s, β^s, γ^s

Oscilating fields are present only at the nearsurface region, so there is considerable overlap with $|i_s\rangle$ but practically no overlap

with $|i_{\rm h}\rangle$

Figure 5. Wavefunctions involved in the photoelectric effect in the incoming-wave picture. Left side, final states, (a) propagating 'bulk' final state for low damping, (b) evanescent state in a band gap and (c) the strong damping case. Right side, initial states, (d) propagating 'bulk' state and (e) localized surface state.

 $M \sim \langle f | A \nabla + divA | i_{b/s} \rangle$

l I_b

Circular dichroism on YBCO

Circular dichroism on Sr₂RuO₄

<u>Surface</u>: lower velocity + dichroism <u>Bulk</u>: higher velocity + no dichroism

Line shape analysis

β -band splitting

The outer pocket β_1 is more "square" like

Spin-Orbit and Rashba effect

Spin–Orbit in the bulk: spin degeneracy remains, just shifts in energy

Spin–Orbit at the surface: broken symmetry, lifted spin degeneracy

$$\begin{bmatrix} c_{yz,\uparrow}^{+} & c_{xz,\uparrow}^{+} & c_{yz,\downarrow}^{+} & c_{xz,\downarrow}^{+} \end{bmatrix} \qquad \widetilde{H} = \begin{bmatrix} \varepsilon_{1} & g & r & 0 \\ g & \varepsilon_{2} & 0 & r \\ \overline{r} & 0 & \varepsilon_{1} & g \\ 0 & \overline{r} & g & \varepsilon_{2} \end{bmatrix} \qquad \begin{array}{l} \varepsilon_{1} = -2t\cos(k_{y}) - \mu \\ \varepsilon_{2} = -2t\cos(k_{x}) - \mu \\ g = -4t_{1}\sin(k_{x})\sin(k_{y}) \\ r = \alpha \left[\sin(k_{y}) + i\sin(k_{x})\right] \\ \overline{r} = \alpha \left[\sin(k_{y}) - i\sin(k_{x})\right] \end{array}$$

α -pocket, surface cf bulk, El-ph coupling

Ingl et al PRB 72, 205114 (2005).

LATTICE DYNAMICS AND ELECTRON-PHONON COUPLING ...

PHYSICAL REVIEW B 76, 014505 (2007)

FIG. 2. (Color online) Phonon dispersion in Sr_2RuO_4 , symbols denote the measured frequencies and lines those calculated with the lattice dynamical model. We show the phonon dispersion along the main symmetry directions [100], [110], and [001], separated according to the irreducible representations, see text and Table I.

Werner et al PRB 76, 014505 (2007).

Comparison to dHvA FS fits

IFW

ES&ES, Kyiv - May 2013

TB model

TB model, comparison to other methods

$$\hbar\Omega_{xx} = \sqrt{\sum_{i=\alpha,\beta,\gamma} \frac{e^2}{L_a L_b L_c \epsilon_0} \left\langle f_k \frac{\partial^2 E^{(i)}}{\partial k_x \partial k_x} \right\rangle_{\rm BZ}}$$
$$\hbar\Omega_{xx} = 1.3 \,\rm eV$$

mass type	α	β	γ	total	year
(this study)	5.4	4.8	16.7	26.9	
Cyclotron thermodynamic [15, 75]	3.3	7.0	16.0	26.3	2001
Cyclotron thermodynamic [72]	3.4	7.5	14.6	25.5	1998
Cyclotron thermodynamic [76]	3.4	6.6	12.	22.0	1998
Cyclotron thermodynamic [77]	3.2	6.6	12.0	21.8	1996
Cyclotron resonance [15]	2.1	4.3	5.8	12.2	2003
Cyclotron resonance [78]	4.3	5.8	9.7	19.8	2000

Superconducting gap

Suderow et al. NJP 11, 093004 (2009)

Double-layered ruthenate: Sr₃Ru₂O₇

Wei-Cheng Li et al. B 81, 184403 2010

Tri-layered ruthenate: Sr₄Ru₃O₁₀

 Sr_2RuO_4 : $3 \times 1 \times 1 = 3$ bands $Sr_4Ru_3O_{10}$: $3 \times 3 \times 2 = 18$ bands

- Splitting of the surface β band, presumably due to spinorbit interaction
- Enhanced renormalization of surface bands
- Enhanced electron phonon coupling for the surface band
- TB-model parametrizing quasiparticle dispersion in Sr_2RuO_4 consistent with bulk measurements.

Thank you for your attention

